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Abstract

We present a summary on ongoing simulation results
for the electron-cloud (EC) buildup in the context of the
proposed FNAL Main Injector (MI) intensity upgrade ef-
fort [1]. Most of the results presented here are for the field-
free region at the location of the retarding field analyzer
(RFA) electron detector [2–4]. The primary input variable
we exercise is the peak secondary electron yield (SEY)
δmax, which we let vary in the range1.2 ≤ δmax ≤ 1.7.
By combining our simulated results for the electron flux
at the vacuum chamber wall with the corresponding RFA
measurements we infer that1.25 ∼< δmax ∼< 1.30 at this lo-
cation. From this piece of information we estimate fea-
tures of the EC distribution for various fill patterns, includ-
ing the average electron number densityne. We then com-
pare the behavior of the EC for a hypothetical RF frequency
fRF = 212 MHz with the current 53 MHz for a given total
beam populationNtot. The densityne goes through a clear
threshold as a function ofNtot in a field-free region. As ex-
pected, the higher frequency leads to a weaker EC effect:
the threshold inNtot is a factor∼ 2 higher forfRF = 212
MHz than for 53 MHz, andne is correspondingly lower by
a factor∼ 2 whenNtot is above threshold. The comparison
of the EC behavior for the two RF frequencies in a dipole
bending magnet remains to be done. We briefly describe
further work that needs to be carried out, sensitivities in
the calculation, and puzzles in the results that remain to be
addressed.

This version of the paper corrects relatively minor errors
in the HB2008 published version, particularly Fig. 5 and
the conclusions derived therefrom.

INTRODUCTION

An upgrade to the MI at FNAL is being considered that
would increase the bunch intensityNb from the present
∼ 6 × 1010 to ∼ 30 × 1010 in order to generate intense
beams for the neutrino program [1]. Such an increase in
beam intensity would place the MI in a parameter regime
where other storage rings have seen a significant EC effect.
Motivated by this concern, efforts have been undertaken
over the recent past to measure [2–4] and simulate [5–12]
the magnitude of the effect and to assess its operational im-
plications on the proposed upgrade.

Although achieving such high intensities will require
significant hardware upgrades, the technique of slip-
stacking the bunch trains generated by the booster allows,
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at present, bunch intensitiesNb ∼> 10 × 1010 in the MI,
though not for all fill patterns achievable at lower intensi-
ties. During 2006 an RFA-type electron detector was in-
stalled in a field-free straight section of the MI which has
been used to measure the EC flux at the walls of the vacuum
chamber [2–4]. The one-turn-averaged, volume-averaged,
EC number densityne inferred from these measurements
is sufficiently low that it is not expected to cause signifi-
cant detrimental effects on the beam. This absence of an
effect is, indeed, consistent with observations. Neverthe-
less, the RFA signal obtained at the highest achieved beam
intensities is sufficiently clear to allow a first calibration
of the simulation codes and therefore a sharpening of their
predictions, and to better evaluate options for the proposed
intensity upgrade.

In this article we present the current status of the
EC build-up simulations by means of the build-up code
POSINST [13–16], and their calibration against the above-
mentioned RFA measurements. By comparing our sim-
ulations against measurements, and subject to reasonable
assumptions, we conclude thatδmax was in the range
1.25 ∼< δmax ∼< 1.30 at the location of the RFA when the
measurements were taken [3].1 We compare the EC build-
up in the RFA field-free region with the build-up in a dipole
bending magnet. We find a qualitative difference between
the two: ne shows a clear threshold behavior as a func-
tion of δmax in the field-free region but not in the dipole
magnet. In this latter case,ne is higher by a factor of
∼ 3 than in the field-free region at the same beam inten-
sity provided threshold is exceeded in the field-free region.
We then compare the EC build-up for a hypothetical RF
frequencyfRF = 212 MHz with the current value of 53
MHz, for a given total beam populationNtot. We carry
out the comparison of the two frequencies in the range
3.29 × 1013 ≤ Ntot ≤ 16.4 × 1013, which roughly cor-
responds to the range6×1010 < Nb < 30×1010 in bunch
intensity. In the field-free region we see a strong threshold
behavior ofne as a function ofNtot at fixedδmax, consis-
tent with earlier simulations [5–11]. ForfRF = 212 MHz,
the threshold value ofNtot is higher by a factor∼ 2 than
for 53 MHz, and the value ofne is correspondingly lower
by a factor of∼ 2. Initial results of this comparison were
described in Ref. 12. The corresponding comparison of the
EC build-up for the two RF frequencies in a dipole bend-
ing magnet remains to be carried out, and certain puzzles
in our results remain to be explained.

1In general,δmax can increase due to venting of the chamber to air, or
decrease due to beam-induced conditioning.



Table 1: Fill patterns analyzed.

Case No. trains Nb [1010] Comment
1a 5 9.7 even gaps
1b 5 9.0 even gaps
1c 5 8.1 even gaps
1d 5 7.2 even gaps
2a 4 9.5 even gaps
2b 4 9.1 even gaps
3 4 9.5 uneven gaps
4 3 9.1 even gaps

FIELD-FREE REGION

Summary of Measurements

We are concerned here only with measurements taken
for eight specific fill patterns. In these measurements a
beam of 3, 4 or 5 booster trains was used, each train con-
sisting of 81 consecutive filled buckets of bunch intensity
Nb as indicated in Tab. 1. For cases 1, 2 and 4, the trains
were equally spaced, with a gap of 5 empty buckets be-
tween trains, in addition to a long abort gap of 77 empty
buckets (the harmonic number ish = 588). For case 3,
one of the trains was spaced further away from the other
three, by a gap of 42 empty buckets. The MI beam ramps
from injection atEb = 8.9 GeV to extraction at 120 GeV
in ∼ 0.5 s, corresponding to∼ 45, 000 revolutions. The
beam crosses transition atEb ∼> 20 GeV. The RFA is in-
stalled at the top of a free-field round chamber. It presents
to the beam a circular opening1′′ in diameter. The RFA
signal was recorded during the full energy ramp. Using the
known acceptance of the RFA and itsV −A calibration, the
incident electron fluxJe was inferred from the RFA signal,
as shown in Fig. 1. For reasons that are not well under-
stood, the RFA signal peaks in all cases atEb ' 60 GeV,
and it is for this beam energy that the value ofJe is plot-
ted in Fig. 1. We will address this issue in the discussion
below.

Simulation Conditions

Ideally we would simulate the entire energy ramp, but
this is wholly beyond our present-day computer capabili-
ties. We have therefore simulated the EC build-up only for
one full MI revolution for each case (the revolution period,
T0 = 11.1 µs, is much longer than necessary for the EC to
reach a steady state, hence the one-turn averages sensibly
represent steady-state values), and only for a few selected
values ofEb during the ramp. For each value ofEb we used
the actually measured value of the RMS bunch lengthσz,
as shown in Fig. 2, and the corresponding transverse RMS
beam sizesσx andσy at the RFA location. For the purposes
of comparing our simulations against measurements, how-
ever, we select onlyEb = 60 GeV. CPU running time on a
Macintosh G5 (1.8 GHz) is 1.5–2.5 hrs for one MI revolu-
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Figure 1: Electron flux incident on the vacuum chamber
wall inferred from the RFA measurements in a field-free
region, atEb = 60 GeV. Each point on this plot represents
a “case,” as listed on Table. 1.
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Figure 2: Bunch length vs. beam momentum during the MI
ramp. Transition is crossed just above 20 GeV/c.

tion, depending on which parameter set is chosen. Relevant
machine and simulation parameters are listed in Tab. 2.

Concerning the source of electrons, we assume here that
the main primary-electron source mechanism is ionization
of residual gas, with pressure and temperature as listed in
Tab. 2. We choose an artificially high pressure of 20 nTorr
for the purposes of speeding up the simulated EC build-
up; since the EC is dominated by secondary electron emis-
sion off the walls of the chamber, the details of the primary
mechanism are not very important. We assume that the
SEY model described in [14, 15] is applicable to the MI
stainless steel vacuum chamber, with the additional prac-
tical assumption that the SEY at 0 energy,δ(0), is propor-
tional toδmax, δ(0)/δmax = 0.2438. The peak SEYδmax is
the primary variable exercised in this set of simulations: we
allow it to take values through the range1.2 ≤ δmax ≤ 1.7.
We keepEmax, the incident electron energy at which the
SEY peaks, fixed at 293 eV.



Table 2: Assumed MI parameters for EC simulations.

Ring and beam
Ring circumference C = 3319.419 m
Revolution period T0 = 11.13 µs
RF frequency fRF = 52.809 MHz
Harmonic number h = 588
Beam energy Eb = 60 GeV
Bunch profile 3D gaussian
Tr. RMS bunch sizes (σx, σy) = (0.866, 1.06) mm
RMS bunch length σz = 0.19 m
Pipe cross sect. at RFA round
Pipe radius at RFA a = 7.3 cm
Pipe cross sect. at dipole elliptical
Pipe semiaxes at dipole (a, b) = (6.15, 2.45) cm
Dipole field atEb = 60 GeV B = 0.69 T

Primary e− sources
Resid. gas pressure P = 20 nTorr
Temperature T = 305 K
Ioniz. cross-section σi = 2 Mbarns
Ioniz. e− creation rate 1.266× 10−7 (e/p)/m
Secondary e− parameters
Peak SEY δmax = 1.2− 1.7
Energy atδmax Emax = 292.6 eV
SEY at 0 energy δ(0) = 0.2438× δmax

Simulation parameters
Full bunch length Lb = 5σz

Primary macroelectrons/bunch 100
Max. no. of macroelectrons 20000
No. kicks inLb Nk = 253
Integration time step 4.8× 10−11 s
Space-charge grid 64× 64

Simulation results for the RFA

Two samples of the EC distribution, averaged in time
over one full turn, are shown in Fig. 3. Results forJe are
shown in Figs. 4 and 5. In this latter plot we also show the
measured data for the eight cases (Fig. 1) superposed on the
simulations. The intersections of the measurements with
simulations show a set of solutions forδmax in the range
1.25∼<δmax∼<1.30. The fact that these solutions are reason-
ably well clustered suggests consistency of the model and
of the measurements. The simulated values shown forJe

were obtained by averaging the incident flux during one full
MI revolution over the entire chamber surface being simu-
lated. Although the RFA only counts the electrons striking
the top of the chamber within a1′′-diameter disk about the
horizontal center, we prefer to plot the value ofJe aver-
aged over the entire chamber surface. We have verified that
this whole-surface average is virtually identical to the local
average within the RFA disk owing to the approximately
cylindrical nature of the problem. The whole-surface aver-
age has the advantage, of course, of being much less sensi-
tive to statistical noise.

The corresponding one-turn averaged values ofne are
shown in Fig. 6. It is clear thatJe and ne go through
a threshold inδmax: below (above) threshold,ne has an
exponential (linear) dependence onδmax. These behav-
iors are expected on general grounds: below threshold, the
multiplicative effect of secondary emission leads to expo-
nential growth. Above threshold a high enough value of
ne is reached that space-charge forces suppress any further
growth. In the range1.25 ∼< δmax ∼< 1.30 the average den-
sity ne is in the rangene ∼ 1010 − 1011 m−3 which is
typically lower by an order of magnitude than the average
beam neutralization level given by

nb =
Nb

πa2〈sb〉
=

Ntot

πa2C
(1)

where〈sb〉 = C/M is the average bunch spacing andM
is the number of bunches stored in the ring. For this reason
no significant effect on the beam is expected; indeed, this
lack of an effect is consistent with observations.

Simulation Results for the Dipole Magnet

We have carried out EC build-up simulations in a dipole
bending magnet atEb = 60 GeV. All simulation parame-
ters are the same as for the RFA location, except that the
chamber is elliptical with semi-axes(a, b) = (6.15, 2.45)
cm. The dipole field strength is0.0115 T/(GeV/c), ie.
B = 0.69 T at 60 GeV/c. Other parameters are listed in
Tab. 2.

Thex − y distribution of the time-averaged EC density
is shown in Fig. 7, which should be compared with 3. The
magnetic field effectively confines the electrons to tight
vertical spirals, leading to the characteristic stripe structure
seen in Fig. 7.

The averagedJe and ne are shown in Fig. 8, which
should be compared with Figs. 4 and 6. It seems clear that,
in this case, there is no threshold behavior as a function of
δmax. It is possible that the threshold occurs at lower values
of δmax than 1.2. It is also possible that the effectively one-
dimensional nature of the build-up physics in the dipole,
as compared to the two-dimensional nature in the field-free
region, accounts for the qualitative difference between the
two.

fRF = 53 MHZ VS. 212 MHZ

One way to make the EC less intense is to spread out the
beam charge along the circumference because less intense
bunches naturally lead to lower-energy electrons hence,
typically, to a lower effective SEY. To quantify the poten-
tial benefit of this effect for the MI, we have carried out a
comparison of the current RF frequency,fRF = 53 MHz,
with a hypothetical frequency 4 times higher,2 for a given
total beam populationNtot.

In this initial assessment, we have carried out a simpli-
fied simulation only at injection energy,Eb = 8.9 GeV,

2The precise values offRF are 52.809 and 211.24 MHz.



and only in the field-free section at the location of the RFA.
Furthermore, we assume a simplified fill pattern in which
there is only one long train and one gap. Specifically, for
eachfRF we assume a fill pattern as follows:

fRF =
{

53 MHz: 548 full + 40 empty buckets

212 MHz: 2192 full + 160 empty buckets
(2)

For any given fill pattern all the bunches are assumed to
have the same particle populationNb. When carrying out
comparisons of the two RF frequencies, we assume that
Nb for fRF = 212 MHz is 1/4 of the value forfRF = 53
MHz, so thatNtot is the same in both cases. The range of
values explored forfRF = 53 MHz is Nb = (6 − 30) ×
1010, corresponding toNb = (1.5−7.5)×1010 for fRF =
212 MHz, and toNtot = (3.29 − 16.4) × 1013 for either
case. Concerning the RMS bunch lengthσz, we assume
σz = 0.75 m for fRF = 53 MHz, andσz = 0.75/4 =
0.1875 m for fRF = 212 MHz. We assume the same SEY
model as above, but we restrictδmax to the range 1.2–1.4.
Parameters specific to this exercise are listed in Tab. 3 [12].
Parameters that do not appear here are the same as in Tab. 2.

Results

Fig. 9 shows the average incident electron fluxJe at the
walls of the chamber, which might compared with the data
in Fig. 4. The result thatJe is much lower forEb = 8.9
GeV than at higher values ofEb is consistent with previous
MI simulations in a somewhat similar parameter regime
[8].

Figure 10 showsne vs. Ntot, along with the average
beam neutralization density, Eq. 1. For sufficiently high
δmax and/orNtot, the average EC density exceeds the beam
neutralization level. This condition is typically a rough in-
dication of the onset of significant effects on the beam such
as single-bunch instability or emittance growth.

Figures 9 and 10 exhibit a clear threshold behavior in
Ntot. Simple fits to these data show that whenNtot exceeds
a certain valueNth, the average EC density grows like

ne ' n0(Ntot −Nth) (3)

wheren0 ' 0.04 m−3, roughly independently ofδmax and
fRF. On the other hand, as shown in Fig. 11, the threshold
Nth does depend on bothδmax andfRF, in the form

Nth ' −N0(δmax − δ0) (4)

whereN0 ' 2.5 × 1014, roughly independently offRF,
and

δ0 '
{

1.75, fRF = 53 MHz
1.55, fRF = 212 MHz

(5)

The growth ofne and Je as a function ofNtot can
be partially explained by the monotonic dependence of
the electron-wall impact energyE0 on Ntot, as shown in
Fig. 12. AsE0 increases towardsEmax ' 293 eV, where
δ(E0) is maximum, one naturally expects an increase in

the effective SEY, hence a larger electron density. This ar-
gument, however, does not explain the above-mentioned
threshold behavior, which probably involves a competition
of opposing effects such as secondary emission, space-
charge forces, and the partial absorption of low-energy
electrons striking the walls.

CONCLUSIONS

By fitting our EC build-up simulations to the RFA-
measured electron-wall flux in an MI field-free region
we conclude that the peak SEY was in the range
1.25 ∼< δmax ∼< 1.30 at the time of the measurements.
This range of values is consistent with others for well-
conditioned stainless steel [17]. Sinceδmax is almost cer-
tainly the essential parameter that will determine the EC
build-up level in the MI upgrade, bracketing its value al-
lows for better quantitative predictions for higher intensi-
ties. At present beam intensities, our simulations show that,
for this range ofδmax, the EC density is low enough not to
lead to detrimental effects on the beam, a conclusion con-
sistent with observations.

In the field-free region analyzed, the steady-state EC
wall flux Je and steady-state average densityne show a
threshold behavior as a function ofδmax at fixed beam
intensity. The threshold probably indicates a transition
from a secondary-emission-dominated regime to a space-
charge dominated regime. This threshold behavior is not
seen in the simulations for a dipole bending magnet for
the range of values ofδmax explored in this article, namely
1.2 ≤ δmax ≤ 1.7; more work is needed to understand this
absence of threshold behavior. One qualitative difference
between field-free and dipole regions is that the EC dynam-
ics in the former is effectively two-dimensional, while it is
one-dimensional in the latter. This difference may hold the
key to the explanation.

There is one puzzling qualitative difference between
measurements and simulations that remains to be ex-
plained: the RFA signal shows a strong dependence on
beam energy during the ramp, typically peaking atEb ∼ 60
GeV, while spot-check simulations for the field-free region
carried out atEb = 8.9, 20, 45, 60 and 90 GeV show virtu-
ally no dependence onEb (for each simulated case we used
the appropriate values for all energy-dependent parameters,
in particular the RMS beam sizes). We further recall that
transition energy is∼ 20 GeV, which is significantly below
the energy at which the RFA signal peaks. We do not have
an explanation for this discrepancy. It is possible that our
simulations do not accurately represent certain details of
the actual situation; for example, a significant beam closed
orbit shift during the ramp might affect the RFA signal, but
this shift would not be taken into account in the simulation
because the closed orbit goes exactly through the geomet-
rical center of the chamber. Interestingly, measurements at
the SPS show a qualitatively similar behavior as the MI: the
SPS RFA signal is strongly energy-dependent and peaks at
an energy significantly higher than transition energy [18].



Table 3: Assumed MI fill pattern parameters for RF frequency comparisons.

Parameter Symbol [unit] Value

Ring and beam
RF frequency fRF [MHz] 52.809 211.24
Harmonic number h 588 2352
No. of bunches M 548 2192
Gap length · · · [buckets] 40 160
Bunch spacing · · · [buckets] 1 1
Bunch spacing tb [ns] 18.94 4.734
Bunch population Nb [1010] 6− 30 1.5− 7.5
Transverse RMS bunch sizes (σx, σy) [mm] (2.3,2.8)
RMS bunch length σz [m] 0.75 0.1875
Total beam population Ntot [1013] 3.29− 16.4
Beam energy Eb [GeV] 8.9

Simulation parameters
No. kicks inLb Nk [· · ·] 253 65
Integration time step · · · [s] 4.8× 10−11

We are not aware of an explanation for the effect at the SPS,
although a correlation has been noted between the RFA sig-
nal and an empirical but simple combination of powers of
the transverse and longitudinal beam sizes.

When we compare the simulated EC build-up in the RFA
field-free region for two RF frequencies, namely the cur-
rent 53 MHz with a hypothetical 212 MHz, for a given
total beam populationNtot, we observe a clear thresh-
old behavior as a function ofNtot: whenNtot exceeds a
valueNth, ne increases proportionally to(Ntot−Nth); for
Ntot < Nth, ne grows exponentially withNtot.

The thresholdNth has a sensitive inverse dependence on
δmax, and a sensitive direct dependence onfRF: for a given
δmax, Nth is roughly a factor of 2 higher forfRF = 212
MHz than for 53 MHz. For fixedNtot, this qualitative ben-
eficial effect of the higherfRF can be expected on rather
simple grounds, because the correspondingly lower value
of Nb makes the electron-wall impacts less energetic hence
less effective in generating secondary electrons.

The dependence ofNth on fRF affords the possibility
of dramatically reducing the EC density assuming one has
some freedom to chose the value ofNtot. This is because
there is always a range ofNtot for which the electron cloud
is below threshold forfRF = 212 MHz but above thresh-
old for fRF = 53 MHz. For example, in Fig. 10 (bot-
tom) for the caseδmax = 1.3 andNtot = 0.8 × 1014, the
simulatedne is almost 5 orders of magnitude smaller for
fRF = 212 MHz than for 53 MHz. On the other hand, if
the desired value ofNtot is so high that it exceeds thresh-
old for fRF = 212 MHz (and,a fortiori, for 53 MHz), then
the beneficial effect of the higherfRF is in the range of a
factor of∼ 2 rather than several orders of magnitude. This,
unfortunately, is the situation for the planned MI upgrade.

Although the RF frequencies comparison carried out
here is based on a simplified beam fill pattern, and only

for Eb = 8.9 GeV, we expect the qualitative features of
our results to remain valid for more realistic patterns, in-
volving several gaps in the bunch train, provided the values
of Ntot are in the range considered here. It seems impor-
tant to repeat this exercise in a dipole on account of the
observed qualitative difference in the simulations between
a field-free region and a dipole field region.

We believe the conclusions reached here to be qualita-
tively correct; however, our simulations may be sensitive
to variables that may change quantitative details of the re-
sults. Such variables may include:

• The precise value ofδ(0).

• The detailed composition of the secondary emission
energy spectrum, particularly the fraction of redif-
fused electrons.

• The precise value ofEmax.

• Computational parameters, such as the space-charge
grid size and integration time step.

Although the simulation parameter values used here
have been shown in previous similar work to yield rea-
sonably converged results, we intend to verify this in the
present context. We also intend to extend the work pre-
sented here by further exploring the physical parameter
regime.
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Figure 3: Simulated EC number density distribution in the field-free location. The distribution is averaged over time
during one MI revolution forEb = 60 GeV. The beam (not shown) travels perpendicularly to the page through the center
of the chamber. The red circle represents the vacuum chamber boundary used in the simulation. Left: case 4, assuming
δmax = 1.2. Right: case 1a, assumingδmax = 1.7.
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Figure 4: Simulated electron fluxJe incident on the vac-
uum chamber walls at the field-free region vs. the assumed
value ofδmax, atEb = 60 GeV. The flux was averaged dur-
ing one MI revolution and over the entire chamber surface.
Top: linear scale; bottom: logarithmic scale (same data).
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Figure 5: Detail of the simulated electron fluxJe (Fig. 4
bottom) plotted along with the RFA measurements, taken
from Fig. 1, for each case (thick horizontal lines). The in-
tersections of the measurements with the simulations, indi-
cated by bowties, imply1.25∼< δmax ∼< 1.30.
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Figure 6: Simulated EC density at the field-free region
where the RFA is installed vs. the assumed value ofδmax,
at Eb = 60 GeV. The density was averaged during one
MI revolution and over the entire volume of the chamber
section being simulated. Top and bottom are the same sim-
ulated data, plotted with linear and logarithmic scales re-
spectively.
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Figure 7: Simulated EC density distribution in a dipole bending magnet, averaged over time during one MI revolution for
Eb = 60 GeV. The red ellipse represents the vacuum chamber boundary used in the simulation. Top: case 4, assuming
δmax = 1.2. Bottom: case 1a, assumingδmax = 1.7. The slight left-right asymmetry of the density aboutx = 0 is due to
numerical fluctuations and the binning algorithm; this asymmetry is expected to disappear with higher statistics.
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Figure 8: Simulated EC flux at the wall (top), and volu-
metric density (bottom) in a dipole bend vs. the assumed
value ofδmax, atEb = 60 GeV. The quantities were aver-
aged during one MI revolution. The flux was averaged over
the entire chamber surface, and the density over the entire
volume.
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Figure 9: Average simulatedJe at the RFA location for
Eb = 8.9 GeV andδmax = 1.2, 1.3 and 1.4. Top: linear
scale; bottom: log scale (same data).
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Figure 10: Average simulatedne. Top: linear scale; bot-
tom: log scale (same data). The straight green line in the
top plot is the average beam neutralization density, Eq. (1).
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Figure 11:Nth vs. δmax, Eqs. (4-5).
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Figure 12: Average simulated electron-wall impact kinetic
energy, per electron-wall collision.


